E資格学習 深層学習 Day4 ⑤Transformer

RNNとSeq2Seqのおさらい

  • RNNは系列情報を内部状態ベクトルに変換する。t-1までの単語が来た時に、tにくる単語が何かを確率分布(事後確率)で出力する。始めの単語(Start of Sentence)の予測や、先頭単語を与えるこにより、文章を生成することが可能。
  • Seq2Seqでは、Encoder RNNとDecoder RNNの2つが連結している。Encoder → 潜在変数(h)→ Decoderとして内部状態ベクトルhとして集約される。Decoderに正解を持たせることで教師あり学習ができる。
  • 入力データ数の大小に関わらず、内部状態ベクトルは固定長という点に注意。長くなればなるほど、BLEU(評価値)が小さくなってしまう。そのため、長い系列長データの学習に弱いという特長がある。

Transformer

  • 固定長ベクトル変換であるために、長い系列長の場合に精度がなかなか出ないという弱点を解決したAttention機構のみを使ったモデル。
  • Encoder、Decoder双方にRNNを全く使っていない。
  • 位置情報についてはPositional Encodingによって付加。
  • Encoderでは、Positional Encodingによる位置情報付与→Dotprodcut Attention(Self Attention)→全結合層
  • Decoderでは、Positional Encoding→未来の単語を見ないようなマスク処理(Masked Multihead Attention)をSelf Attentionで実施→ Encoderの出力とまとめてSource Target Attention →全結合層
Attention
  • 足すと1になる重みを各系列データ毎に割り当てることで、入力値のどの部分に注目するのかを、注目する度合いを分散する仕組み。
  • 辞書オブジェクトともいえる。Query, Key, Valueの3要素があり、検索したい入力クエリをもとに、キーの中からクエリに似た文章をValueから出力する仕組み。
  • query(入力)とKey を掛け合わせてSoftmaxをかませる→ Attention Weight。Attentino Weight ・ Valueから、最も類似しているValueを返す。
  • Self-Attention(自己注意)とSource Target Attentionの違い:Source Targetでは、Queryにターゲット、Key, Valueはソースデータを使う。自己注意ではQuery Key Valueは全て同じ情報が与えられる。 Attention(Q, K, V) = softmax (\frac {QK^T}{\sqrt d_k} )V
  • Mulihead Attentionでは、Scaled Dot Attentionを8個分concatする。

f:id:rakurakura:20220106154901p:plain

Positional Encoding
def position_encoding_init(n_position, d_pos_vec):
    """
    Positional Encodingのための行列の初期化を行う
    :param n_position: int, 系列長
    :param d_pos_vec: int, 隠れ層の次元数
    :return torch.tensor, size=(n_position, d_pos_vec)
    """
    # PADがある単語の位置はpos=0にしておき、position_encも0にする
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / d_pos_vec) for j in range(d_pos_vec)]
        if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)])
    position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2])  # dim 2i
    position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2])  # dim 2i+1
    return torch.tensor(position_enc, dtype=torch.float)
Scaled Dot Product Attention
class ScaledDotProductAttention(nn.Module):
    
    def __init__(self, d_model, attn_dropout=0.1):
        """
        :param d_model: int, 隠れ層の次元数
        :param attn_dropout: float, ドロップアウト率
        """
        super(ScaledDotProductAttention, self).__init__()
        self.temper = np.power(d_model, 0.5)  # スケーリング因子
        self.dropout = nn.Dropout(attn_dropout)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, q, k, v, attn_mask):
        """
        :param q: torch.tensor, queryベクトル, 
            size=(n_head*batch_size, len_q, d_model/n_head)
        :param k: torch.tensor, key, 
            size=(n_head*batch_size, len_k, d_model/n_head)
        :param v: torch.tensor, valueベクトル, 
            size=(n_head*batch_size, len_v, d_model/n_head)
        :param attn_mask: torch.tensor, Attentionに適用するマスク, 
            size=(n_head*batch_size, len_q, len_k)
        :return output: 出力ベクトル, 
            size=(n_head*batch_size, len_q, d_model/n_head)
        :return attn: Attention
            size=(n_head*batch_size, len_q, len_k)
        """
        # QとKの内積でAttentionの重みを求め、スケーリングする
        attn = torch.bmm(q, k.transpose(1, 2)) / self.temper  # (n_head*batch_size, len_q, len_k)
        # Attentionをかけたくない部分がある場合は、その部分を負の無限大に飛ばしてSoftmaxの値が0になるようにする
        attn.data.masked_fill_(attn_mask, -float('inf'))
        
        attn = self.softmax(attn)
        attn = self.dropout(attn)
        output = torch.bmm(attn, v)

        return output, attn
Multihead Attention
class MultiHeadAttention(nn.Module):
    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        """
        :param n_head: int, ヘッド数
        :param d_model: int, 隠れ層の次元数
        :param d_k: int, keyベクトルの次元数
        :param d_v: int, valueベクトルの次元数
        :param dropout: float, ドロップアウト率
        """
        super(MultiHeadAttention, self).__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        # 各ヘッドごとに異なる重みで線形変換を行うための重み
        # nn.Parameterを使うことで、Moduleのパラメータとして登録できる. TFでは更新が必要な変数はtf.Variableでラップするのでわかりやすい
        self.w_qs = nn.Parameter(torch.empty([n_head, d_model, d_k], dtype=torch.float))
        self.w_ks = nn.Parameter(torch.empty([n_head, d_model, d_k], dtype=torch.float))
        self.w_vs = nn.Parameter(torch.empty([n_head, d_model, d_v], dtype=torch.float))
        # nn.init.xavier_normal_で重みの値を初期化
        nn.init.xavier_normal_(self.w_qs)
        nn.init.xavier_normal_(self.w_ks)
        nn.init.xavier_normal_(self.w_vs)

        self.attention = ScaledDotProductAttention(d_model)
        self.layer_norm = nn.LayerNorm(d_model) # 各層においてバイアスを除く活性化関数への入力を平均0、分散1に正則化
        self.proj = nn.Linear(n_head*d_v, d_model)  # 複数ヘッド分のAttentionの結果を元のサイズに写像するための線形層
        # nn.init.xavier_normal_で重みの値を初期化
        nn.init.xavier_normal_(self.proj.weight)
        
        self.dropout = nn.Dropout(dropout)


    def forward(self, q, k, v, attn_mask=None):
        """
        :param q: torch.tensor, queryベクトル, 
            size=(batch_size, len_q, d_model)
        :param k: torch.tensor, key, 
            size=(batch_size, len_k, d_model)
        :param v: torch.tensor, valueベクトル, 
            size=(batch_size, len_v, d_model)
        :param attn_mask: torch.tensor, Attentionに適用するマスク, 
            size=(batch_size, len_q, len_k)
        :return outputs: 出力ベクトル, 
            size=(batch_size, len_q, d_model)
        :return attns: Attention
            size=(n_head*batch_size, len_q, len_k)
            
        """
        d_k, d_v = self.d_k, self.d_v
        n_head = self.n_head

        # residual connectionのための入力 出力に入力をそのまま加算する
        residual = q

        batch_size, len_q, d_model = q.size()
        batch_size, len_k, d_model = k.size()
        batch_size, len_v, d_model = v.size()

        # 複数ヘッド化
        # torch.repeat または .repeatで指定したdimに沿って同じテンソルを作成
        q_s = q.repeat(n_head, 1, 1) # (n_head*batch_size, len_q, d_model)
        k_s = k.repeat(n_head, 1, 1) # (n_head*batch_size, len_k, d_model)
        v_s = v.repeat(n_head, 1, 1) # (n_head*batch_size, len_v, d_model)
        # ヘッドごとに並列計算させるために、n_headをdim=0に、batch_sizeをdim=1に寄せる
        q_s = q_s.view(n_head, -1, d_model) # (n_head, batch_size*len_q, d_model)
        k_s = k_s.view(n_head, -1, d_model) # (n_head, batch_size*len_k, d_model)
        v_s = v_s.view(n_head, -1, d_model) # (n_head, batch_size*len_v, d_model)

        # 各ヘッドで線形変換を並列計算(p16左側`Linear`)
        q_s = torch.bmm(q_s, self.w_qs)  # (n_head, batch_size*len_q, d_k)
        k_s = torch.bmm(k_s, self.w_ks)  # (n_head, batch_size*len_k, d_k)
        v_s = torch.bmm(v_s, self.w_vs)  # (n_head, batch_size*len_v, d_v)
        # Attentionは各バッチ各ヘッドごとに計算させるためにbatch_sizeをdim=0に寄せる
        q_s = q_s.view(-1, len_q, d_k)   # (n_head*batch_size, len_q, d_k)
        k_s = k_s.view(-1, len_k, d_k)   # (n_head*batch_size, len_k, d_k)
        v_s = v_s.view(-1, len_v, d_v)   # (n_head*batch_size, len_v, d_v)

        # Attentionを計算(p16.左側`Scaled Dot-Product Attention * h`)
        outputs, attns = self.attention(q_s, k_s, v_s, attn_mask=attn_mask.repeat(n_head, 1, 1))

        # 各ヘッドの結果を連結(p16左側`Concat`)
        # torch.splitでbatch_sizeごとのn_head個のテンソルに分割
        outputs = torch.split(outputs, batch_size, dim=0)  # (batch_size, len_q, d_model) * n_head
        # dim=-1で連結
        outputs = torch.cat(outputs, dim=-1)  # (batch_size, len_q, d_model*n_head)

        # residual connectionのために元の大きさに写像(p16左側`Linear`)
        outputs = self.proj(outputs)  # (batch_size, len_q, d_model)
        outputs = self.dropout(outputs)
        outputs = self.layer_norm(outputs + residual)

        return outputs, attns